Drosophila Xpd Regulates Cdk7 Localization, Mitotic Kinase Activity, Spindle Dynamics, and Chromosome Segregation
نویسندگان
چکیده
The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER)-independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK) to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes.
منابع مشابه
Mms19 is a mitotic gene that permits Cdk7 to be fully active as a Cdk-activating kinase
Mms19 encodes a cytosolic iron-sulphur assembly component. We found that Drosophila Mms19 is also essential for mitotic divisions and for the proliferation of diploid cells. Reduced Mms19 activity causes severe mitotic defects in spindle dynamics and chromosome segregation, and loss of zygotic Mms19 prevents the formation of imaginal discs. The lack of mitotic tissue in Mms19P/P larvae can be r...
متن کاملMms19 is a mitotic gene permitting Cdk7 to be fully active as Cdk activating kinase
Mms19 encodes a cytosolic iron-sulfur assembly component. We found that Drosophila Mms19 is also essential for mitotic divisions and for the proliferation of diploid cells. Reduced Mms19 activity causes severe mitotic defects in spindle dynamics and chromosome segregation, and loss of zygotic Mms19 prevents the formation of imaginal discs. The lacking mitotic tissue of Mms19 larvae can be rescu...
متن کاملSpindle checkpoint–independent inhibition of mitotic chromosome segregation by Drosophila Mps1
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in ...
متن کاملAurora A contributes to p150glued phosphorylation and function during mitosis
Aurora A is a spindle pole-associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150(glued) on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envel...
متن کاملRNA Stimulates Aurora B Kinase Activity during Mitosis
Accurate chromosome segregation is essential for cell viability. The mitotic spindle is crucial for chromosome segregation, but much remains unknown about factors that regulate spindle assembly. Recent work implicates RNA in promoting proper spindle assembly independently of mRNA translation; however, the mechanism by which RNA performs this function is currently unknown. Here, we show that RNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010